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The complete non-linear equations of motion of an aircraft, treated as an absolutely rigid body, are considered. The control 
parameters are the engine thrust and the angles of deviation of the rudders. The problem of stabilizing a programmed regime 
of the aircraft motion is formulated. The regime is described by specifying the variation with time of the velocity vectors of the 
mass centre and the angular velocity. The so-called "kinetic energy of the deviations" is taken as a Lyapunov function, and a 
stabilizing control is written explicitly. It is proved that the control ensures asymptotic stability of "practically" any programmed 
regime of motion. @ 1997 Elsevier Science Ltd. All rights reserved. 

The dynamical equations of motion of an aircraft as an absolutely rigid body with constant mass and 
constant inertia tensor, expressed in a system of coordinates xyz attached to the centre of mass of the 
aircraft, with the x axis pointing along the body to the nose, the y axis pointing upward and the z axis 
along the right wing, are as follows: 

dv dto 
m - - +  t o x v  = F+mg,  J + t o x J t o = M  (1) 

dt dt 

where m is the mass of  the aircraft, v is the absolute velocity vector of its centre of mass in projections 
onto the xyz axes, to is the absolute angular velocity vector of  the aircraft in projections onto the same 
axes, J is the ine~:ia tensor of  the craft relative to the xyz areas, t is the flight time, g is the acceleration 
due gravity, F is t~lae total vector of non-gravitational forces applied to the aircraft (aerodynamic forces 
and the thrust force P of the engine, which is constant in direction), and M is the moment of the 
aerodynamic forces. 

It is assumed that the acceleration due to gravity is constant in magnitude and direction, the 
atmospheric density is constant, and the aerodynamic forces and moments acting on the aircraft depend 
only on the magnitude of the velocity vector v, on the angle of attack and the glancing angle, which 
determine the position of v relative to the system of coordinates xyz, and also on the thrust P of the 
engine and the positions of the rudders (e.g. the direction rudder, elevator and ailerons), which form 
a vector 8 = (61, lie, 83) [1]. The magnitude of the controls in this formulation are subject to constraints 

18il~H i i=1 ,2 ,3 ;  O ~ P ~ H p  (2) 

Suppose given a programmed regime, of the form 

v = vP( t ) ,  t o =  toP(t)  (3 )  

which satisfies Eqs (1) with an open-loop control 1 w, 8 p satisfying the constraints (2). Our aim is to solve 
the stabilization problem for this regime. 

As new variables, we will consider the deviations from the regime (3) 

Av = v -  vP(t), Am = t o -  toP(t) 

in the region F = {11Av II ~< V, II Ato II < g)}. Then the equations of motion (1) may be rewritten in the 
form:~ 
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m( day ) k - ~ - j  + Ato× Av + Ato× vP(t) + tot'(t)× Av = AF 

j dAto  + A m  × J A t o +  A t o x  JtoP ( t )  + tot, ( t ) x  J A t o =  A M  
dt 

(4) 

where 

AS" = F(v p + Av, to p + Ato, ii p + Ali, PP + AlP, t) - F(vt', toP, liP, Pt',t) 
(5) 

AM = M(vt' + Av, tot' + Ato, lit, + Ali, Pt' + AP, t) - M ( v  p , ¢o p , l iP,  PP, t) 

To calculate an additional control Ali, AP guaranteeing asymptotic stability of the zero solution of 
Eqs (4), we use a Lyapunov function. Such a function will be a modified "kinetic energy of deviations"~f 

G = 1 Ato. JAm + / RmAv. Av (6) 
2 2 

where R is a positive weighting factor, and G(.) is a positive-definite quadratic form. The stabilizing 
control is constructed so as to ensure that the derivative of the Lyapunov function along trajectories 
of the system bf deviational equations will always be negative 

¢7(li, P, to, v) < 0 (7) 

The total derivative of the Lyapunov function (6) along trajectories of Eqs (4) is 

G = Am. JAm+ RmAv. Av = Rmv p -(Atox Av)+ 

+mp .(Amx JAm)+ RmAv. AF + Am- AM 

Conditions (7) will hold if 

= Rmv p. (Am x Av) + mp. (Am x JAm) + 

+RmAv. AF(li, P . . . .  ) + Am. AM(li, P . . . .  ) < 0 
(8) 

Thus, our initial problem of synthesizing a stabilizing control has been reducedt to the algebraic 
problem of solving inequality (8) for the unknown controls li and P. There is no general analytic solution 
of inequality (8), because AF and AM are non-linear functions of the parameter of motion! The weakest 
assumption which enables one to solve Eq. (8) that is also valid for practically all aircraft [1] is that the 
aerodynamic forces and moments are linear functions of the positions of the rudders, and that the thrust 
of the engine is directed strictly along the x axis. In that case the last two terms of Eq. (8) are replaced 
by 

/)F 

where AF and A~! differ from expressions (5) in that the controls are not varied. 
The solution of problem (8) may be expressed in the form 

A8 = - ( O M  ]- '[KAm+/.~],  L o = R m A v x v  p + (JAm) x to p +AI~I k asj 
(9) 

OF 
AP = -k4Av x - d o, d o = Av. Z~ + Av- ~ -  A8 

(10) 
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where K is a diaganal matrix with positive elements kl, k2, k3; k4 > 0. That the matrix OM/O8, calculated 
along the programmed regime (2), is invertible follows from the fact that the aircraft is controllable 
relative to its centre of mass (see footnote on previous page). The value of A8 appearing in (10) is 
calculated in advance using formula (9). 

Note that when the solution (9), (10) is substituted into (8), only the non-strict inequality (~ ~ 0 is 
true, i.e. one can only prove that the zero solution of Eqs (4) is stable in Lyapunov's sense. 

To verify that the zero solution of the unsteady-state equations (4), closed by the control (9), (10), 
is asymptotically stable, one can use a criterion for the derivative of the Lyapunov function to be sign- 
definite (see [2], Theorem 1.1). Consider the function W = (Av x JAto)x, i.e. the first coordinate of this 
vector product. The function W is bounded on F, 0 = 0 on E = {Ato = 0, Av~ = 0}. Evaluating the 
derivative of W along trajectories of Eqs (4), (9) and (10) on E, we get 

I~']a,,=0 = Av x dt I a ' = °  + d a y  × dt~o 4a==0 = 
dt av =o I Av z =0 &v x =0 .ax 

- ~ M  ~ M  -I 

day x JAto In''=° ] = -Ato x JAto - Ato x Jto p - to p x JAto] + d t  a,~ =0 x 

= [ Av x ( - KAto - R m A v  x vt' _ Ato x JAto - Ato x Jto p ) - Ato x Jto p ) + 

dAY x dAtol a,.,=0 ] [_RmAv x [Av x vp ]]x p 2 = = Rmv~ (Av,. + Av~ ) 
+ dt avx =o ]~ 

R>O,  m>O 

Thus, for all programmed trajectories except v ff = 0 (but in that case such important characteristics 
as the angle of attack and the glancing angle are undefined), one can use the standard definition 
[2, Definition 1.1] to define W ¢ 0 in the set E. The remaining conditions of a Theorem 1.1 of [2] are 
satisfied since G and 0 do not depend explicitly on the time. 

The control just determined, in the form (9), (10), requires the minimum possible assumptions 
concerning the aerodynamic characteristics of the aircraft; it implies that the motion (3) is 
asymptotically stable (provided, of course, that constraints (2) are obeyed). 

We present the results of a numerical solution of the stabilization problem for the three-dimensional 
trajectory of an aircraft subject to the control (9), (10). The experiment was carried out using a model 
of a highly manoeuvrable aircraft with the following characteristics: mass m = 19 tons, characteristic 
area S = 56.6 m2. mean aerodynamic chord ba = 3.8 m, wing span l = 13.05 m, and inertia tensor--  
diagonal with components Jx = 2.608 x 104 kg m2, jy  = 1.6067 x 105 kg m2,Jz = 1.378 x 105 kg m 2. The 
aerodynamic forces and moments were taken to be the following functions of the flight conditions 

F a = F - P = ( - X , Y , Z ) ,  M = ( M x , M y , M  z) 

pSu 2 
X = c  x pSu2 Y=c v pSu2 Z = c z ~  

2 ' • 2 ' 2 

pSu 2 1 pSu 2 b M ~ = m x P S U 2 1  M y = m y  M z = m z " ' - ~  a 
• 2 ' " " 2 ' 

C x =Cxl(Ot)+Cx2(Ot)~l,  Cy =Cyl(Ot)+Cy2(Ot)~l, C z =Czl(Ot)~+Cz2(Ot)~ 2 

m= = taxi (a)~3 + rex2 ( a )53  + rex3 (0052 + mx4 (Or)Co x + rex5 (U)C%. 

m,, = my I (@)13 + my 2 (~)53 + my 3 (0062 + my 4 (U)COy + my 5 (Or)CO x 

m 2 = mzl (Cz) + mz2 (a)51 + mz3 (Or)CO z 

where p is the density of the oncoming flow, c~, cy, Cz, mx, my, m z are the non-dimensional coefficients 
of the respective forces and moments, and c~ and [3 and are the angle of attack and glancing angle. 
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Fig. I. Fig. 2. 

The simulation made use of tabulated values for cx, cy, cz, rex, my, mz, as listed in [3], with linear 
interpolation. The parameters occurring in (9) and (10) were determined as follows: R = 10 -3, kl = k2 
= k3 = k4 = 106. 

The programmed trajectory sampled was descent at a constant velocity down a spiral, without slip 
(each turn was assumed to take 60 s). The results--the projections v~, vy and v~ of the velocity of the 
aircraft s centre of mass (m/s) and the projections 0~, ~ and ~ of its absolute angular velocity [rad/s]-- 
are shown in Figs 1 and 2. At the end of the transient all variables tend to stationary values corresponding 
to the selected programmed trajectory. 

The method described for stabilizing arbitrary unsteady trajectories of an aircraft is utilized in the 
Imitation Model of Controlled Flight,t set up at the Mechanico-Mathematical Faculty, Moscow State 
University under the supervision of V. V. Aleksandrov. I wish to thank him and S. S. Lemak for useful 
comments on this research. 

This work was carried out with financial support from the Russian Foundation for Basic Research 
(93-01-16241). 
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